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概要
団代数理論の中に,「G扇」と呼ばれる幾何組み合わせ的な重要な対象がある. 一般に団代数は
整数成分歪対称化可能行列から生じるが, ある側面からみると G扇は実成分の歪対称化可能行列
に対しても定義可能である. 本講演では, その一般化と Coxeter群に関連する構造との関係性に
ついて述べる. 本研究は中国科学技術大学 (University of Science and Technology of China)

の Zhichao Chen氏との共同研究に基づく.

1 団代数の定義と例
団代数とは, 2000年頃に Fomin, Zelevinsky により導入された構造である [1]. その本質的な構造
は変異と呼ばれる非常に巧妙な組み合わせ的操作であり, 数多くの非自明な現象を引き起こす. その
ような特殊性により, 比較的具体的な扱いが可能である. その一方で, 箙の表現や散乱図に現れる壁越
え現象にも変異に関連する構造が発見されるなど, 幅広い応用性を持つことが知られている.

その団代数理論の本質的構造の一つに, 「G扇」とよばれるものがある. 本稿では, その G扇と団
代数の関係性と, その拡張について述べる.

1.1 団代数の定義
団代数の定義について述べる. グラフ Tn を n次の正則木であって, 各頂点 t ∈ Tn からでる n個
の辺が 1,. . . , nによりラベルづけられているものとする. 二つの頂点 t, t′ ∈ Tn が k = 1, . . . , n隣接
するとは, tと t′ が k でラベルづけられた辺でつながっていることをいう. 頂点 t0 ∈ Tn を一つ固定
し, これを初期頂点とよぶ. 正方行列 B ∈ Matn(R) が歪対称化可能であるとは, 正の対角成分を持
つある対角行列 D = diag(d1, . . . , dn) (di > 0)により DB が歪対称になることをいう. 団代数の文
脈では, 歪対称化可能行列は交換行列と呼ばれる. 整数成分の交換行列 B ∈ Matn(Z) に対し, 次の
2n× n行列の族 {B̃t}t∈Tn

を考える.

• 初期頂点に対しては, B̃t0 = (BI )とする. ここで I は n次の単位行列.

• tと t′ が k 隣接するとき, B̃t = (b̃ij;t)と B̃t′ = (b̃ij;t′)には以下の関係が成り立つ.

b̃ij;t′ =

{
−b̃ij;t i = k または j = k,

b̃ij;t + b̃ik;t[b̃kj;t]+ + [−b̃ik;t]+b̃kj;t i, j ̸= k.
(1)
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ここで現れる行列 B̃t を拡張交換行列といい, 変換規則 (1) を (拡張交換行列の) 変異という. また,

B̃t を上側 n × n行列 Bt と下側 n × n行列 Ct で分割し, Bt を B 行列, Ct を C 行列とよぶ. また,

Bt 全体がなす集合 B(B) = {Bt | t ∈ Tn}を変異類とよび, B′ ∈ B(B)であるとき B と B′ は変異
同値であるという. (実は, 変異は対合的であることが知られており, これは確かに歪対称化可能行列
全体の同値関係を与える.)

漸化式 (1)は行列の操作としても表示される. k = 1, . . . , nに対し, Jk を単位行列 I から (k, k)成
分のみを −1に置き換えて得られる単位行列とし, 行列 Aに対し, [A]•k+ (および [A]k•+ )を第 k 列 (お
よび k 行)の正である成分以外全てを 0に置き換えることで得られる行列とする.

命題 1.1. k 隣接する頂点 t, t′ ∈ Tn に対し, 次の漸化式が成り立つ.

Bt′ = (Jk + [−Bt]
•k
+ )Bt(Jk + [Bt]

k•
+ ), Ct′ = CtJk + Ct[Bt]

k•
+ + [−Ct]

•k
+ Bt. (2)

次に (主係数) 団変数の定義に入る. ある n 個の形式的変数 y1, . . . , yn を固定し, これを凍結変数
という. また, Z̃ = Z[y±1

1 , . . . , y±1
n ]を Z係数の y1, . . . , yn 変数 Laurent 多項式環とし, Z̃係数の n

変数有理関数体 F を一つ取り固定する. (これを周囲体という.) Z̃ 上, F を生成する順序付き基底
x = (x1, . . . , xn) とある拡張交換行列 B̃ = B̃t の組 Σ = (x, B̃) を種子という. この種子 (x, B̃) と
k = 1, . . . , nに対して,

θ+k =
∏

bjk>0

x
bjk
j ·

∏
cjk>0

y
cjk
j , θ−k =

∏
bjk<0

x
−bjk
j ·

∏
cjk<0

y
−cjk
j

とおき, 次のように新たな種子 Σ′ = (x′ = (x′
1, . . . , x

′
n), B̃

′) = µk(Σ)を与える操作を k 方向変異と
いう.

x′
i =

{
x−1
k (θ+k + θ−k ) i = k,

xi i ̸= k,
B′ = Bt′ .

今, 種子 Σt0 を一つ固定し, そこから変異を繰り返すことにより種子の族 Σ = {Σt}t∈Tn が与えられ
る. これを団パターンという. また, この中に現れる xt = (x1;t, . . . , xn;t)を団, その要素 xi;t を団変
数という. これらの団変数全体が Z̃代数として生成する F の部分代数を団代数という.

1.2 例
定義は長くなったが, 団代数の骨格は「変異」により団変数を生成することであり, それらがなす

代数を団代数と呼ぶ.

(主係数)団パターンの非自明かつ最も単純な例 (A2 型)を以下に挙げる. 初期交換行列を Bt0 =(
0 −1
1 0

) とする. このとき, 拡張交換行列のパターンは以下のように与えられる.


0 −1
1 0

1 0
0 1




0 1
−1 0

−1 0
0 1




0 −1
1 0

−1 0
0 −1




0 1
−1 0

1 −1
0 −1




0 −1
1 0

0 1
−1 1




0 1
−1 0

0 1
1 0

1 2 1 2 1

また, 初期団変数を xt0 = (x1, x2), 凍結変数を y = (y1, y2) とすると, この拡張行列に対応する団変数は次で



与えられる.{
x1;t0 = x1

x2;t0 = x2

{
x1;t1 = x−1

1 (1 + y1x2)

x2;t1 = x2

{
x1;t2 = x−1

1 (1 + y1x2)

x2;t2 = x−1
2 (1 + y2x

−1
1 + y1x2y2x

−1
1 )

{
x1;t3 = x1x

−1
2 (1 + y2x

−1
1 )

x2;t3 = x−1
2 (1 + y2x

−1
1 + y1x2y2x

−1
1 )

{
x1;t4 = x1x

−1
2 (1 + y2x

−1
1 )

x2;t4 = x1

{
x1;t5 = x2

x2;t5 = x1

1 2

1⋆

21

(3)

ここで, 団変数の具体例における ⋆の計算を定義通りに書き下すと

x1;t3 =
x−1
2 (1 + y2x

−1
1 + y1x2y2x

−1
1 ) + y1

x−1
1 (1 + y1x2)

となることに注意しよう. この式の分母は多項式である. 一方で, この計算を進めると, 1 + y1x2 が約分されて

x1;t3 = x1x
−1
2

(1 + y2x
−1
1 )(1 + y1x2)

1 + y1x2
= x1x

−1
2 (1 + y2x

−1
1 )

となり, x1;t3 は x1, x2 の Z[y1, y2]係数 Laurent多項式で表示される. この性質は団代数理論における最も基
本的な原理であり, Laurent現象と呼ばれる [1].

1.3 基本的な性質
話をランク n の団代数一般に戻す. 初期種子 (x = (x1, . . . , xn), B) と凍結変数 y = (y1, . . . , yn) を固定す
る. Laurent現象により, 任意の団変数 xi;t は x1, . . . , xn の Z[y] = Z[y1, . . . , yn]係数 Laurent多項式になる
が, これに x1 = · · · = xn = 1を代入することで, y1, . . . , yn の整数係数多項式

Fi;t(y) = xi;t|x1=···=xn=1

が得られる. これを F 多項式という. また,

ŷk = yk

n∏
j=1

x
bjk
j

を ŷ 変数という. ŷ = (ŷ1, . . . , ŷn)とする. F 多項式は団変数の特殊な情報により定義されるが, 実は次の性質
により団変数を復元する.

命題 1.2 ([2]). 任意の団変数 xi;t は, ある整数 g1i;t, . . . , gni;t ∈ Zにより

xi;t =

(
n∏

j=1

x
gji;t
j

)
Fi;t(ŷ)

と表される. さらに, 整数 gji;t は後述する漸化式 (4)により, 団変数と独立して求められる.

例えば, 初期交換行列 Bt0 = ( 0 −1
1 0 )に対応する ŷ 変数は, ŷ1 = y1x2 と ŷ2 = y2x

−1
1 により与えられ, 例 (3)

の各団変数は xg1
1 xg2

2 × (ŷ1, ŷ2 の多項式)という形で表されていることが見える.

この整数 g1i;t, . . . , gni;t を並べた列ベクトル gi;t = (g1i;t, . . . , gni;t)
⊤ を g ベクトルといい, それらを並べた

行列 Gt = (g1;t, . . . ,gn;t)を G行列という. 実は, この G行列には次の漸化式が知られている.

命題 1.3. G行列は, 初期条件 Gt0 = I と次の漸化式により求まる.

Gt′ = GtJk +Gt[Bt]
•k
+ −Bt0 [Ct]

•k
+ . (4)

ここで, tと t′ は k = 1, . . . , n隣接する頂点である.



1.4 重要な原理
C 行列 Ct と G 行列 Gt の列ベクトルを Ct = (c1;t, . . . , cn;t), Gt = (g1;t, . . . ,gn;t) とする. 　次の事実は
団代数理論の本質的要素である.

定理 1.4 (cベクトルの符号同一性 [3]). 整数成分の歪対称化可能行列 B に対して, 任意の cベクトルは, 零ベ
クトルでなく, かつ全ての成分が非負であるか非正であるかのいずれか一方である.

この一見するだけでは何の変哲も感じない性質は, 実は団代数の本質的性質である. 実際に, あらゆる文献に
おいて, この性質を仮定することで様々な性質が導かれることが示されている. 一方で, この問に対する初等的
な証明はいまだ知られていない. ([3]では, 散乱図と呼ばれるミラー対称性から生じる対象に, 団代数の各種対応
物を埋め込むことで示された.)

例えば, この事実と F 多項式の正値性 [3] (全ての係数が非負であること) を用いることで, 次のことが示さ
れる.

定理 1.5 ([4]). 任意の t, t′ ∈ Tn と i, j = 1, . . . , nに対して, g ベクトルが一致すること gi;t = gj;t′ と団変数
が一致すること xi;t = xj;t′ は同値である.

この事実から, 団変数が持つ周期性を調べるためには g ベクトルがもつ周期性を調べれば十分である. (これは
g ベクトルが団変数の次数という非常に限られた情報により定義されたことを踏まえると, 驚くべき強力な定理
である.)

1.5 G扇
このようにして g ベクトルは団変数の周期性を完全に保存するという良い性質があるが, さらに幾何組み合わ
せ的に興味深い構造をもつことが知られている. G行列 Gt = (g1;t, . . . ,gn;t)と J ⊂ {1, . . . , n}に対して, 次
の集合を G錐という.

σJ(Gt) =

{∑
j∈J

λjgj;t

∣∣∣∣∣ λj ≥ 0

}
⊂ Rn.

特に, σ{1,...,n}(Gt) = σ(Gt)と書く. 初期行列 B = Bt0 における G錐全体の集合

∆(B) = {σJ(Gt) | t ∈ Tn, J ⊂ {1, . . . , n}}

を G扇という. この名前は次の事実に基づく.

定理 1.6 ([4, 5]). B を整数成分歪対称化可能行列とする. このとき, G扇 ∆(B)は扇である. つまり, 次の条
件を満たす.

• 任意の σ ∈ ∆(B)に対し, σ の面も全て ∆(B)に属する.

• 任意の σ, τ ∈ ∆(B)に対し, σ ∩ τ は σ, τ 両方の面である.

B の歪対称化因子D = diag(d1, . . . , dn)を一つ取り固定する. Rn 上の内積 ⟨ , ⟩D を ⟨a,b⟩D = a⊤Dbによ
り定義する. このとき, cベクトルは, 次のように G扇の中に現れる.

命題 1.7. 次の式が成り立つ.

⟨ci;t,gj;t⟩D =

{
di i = j,

0 i ̸= j.

特に, ci;t は, 面 σ{1,...,n}\{i}(Gt)の法ベクトルである.

実際に, A2 型の G扇は図 1のように与えられる.



σ(Gt0)

=

σ(Gt5)

σ(Gt1)

σ(Gt2)

σ(Gt3)

σ(Gt4)

図 1 A2 型 G扇

1.6 講演の目的-実成分への団代数理論の拡張-

これまで, g ベクトルは団変数の主要な情報を持つことをみた. 団変数は整数成分歪対称行列 B により定まる
ため, これまでは整数成分をもつ g ベクトルが考察の対象であった. 一方で, B, C, G行列を与える漸化式 (2),

(4)を考えると, g ベクトルは実成分を持つ交換行列に対しても定義可能である. 本講演では, その実成分に拡張
した場合に現れる g ベクトルの構造について話す.

ただし, 実成分に拡張すると, cベクトルの符号同一性 (定理 1.4) は常には成り立たない. (その場合, 既存の
団代数理論で発見された良い性質は尽く消失している.) また, cベクトルの符号同一性が判明したとしても, 既
存の団代数理論との類似が得られるかは非自明である. そこで, 次のことが基本的な課題として挙げられるであ
ろう.

問題 1.8.

1. cベクトルの符号同一性が成り立つとき, G扇構造は導かれるだろうか.

2. cベクトルの符号同一性はいつ成り立つのだろうか.

1.7 実成分の拡張への動機付け (歪対称化法)

次の事実は, 実成分 C, G 行列構造を導入することへの動機付けを与える. 歪対称化可能行列 B = (bij) ∈
Matn(R)に対して, 行列 Sk(B) ∈ Matn(R)を

Sk(B) =
(
sign(bij)

√
|bijbji|

)
として定める. 定義から, Sk(B)は歪対称行列である. B の歪対称化因子 D = diag(d1, . . . , dn)を一つ取り固
定する. また, D

1
2 = diag(

√
d1, . . . ,

√
dn), D

− 1
2 = (D

1
2 )−1 とする. このとき, 次の事実が成り立つ.

定理 1.9 (歪対称化法). 初期交換行列を B とする行列パターン Bt, Ct, Gt と, 初期交換行列を Sk(B)とする
行列パターン B̃t, C̃t, G̃t には次の関係がある.

Bt = D− 1
2 B̃tD

1
2 , Ct = D− 1

2 C̃tD
1
2 , Gt = D− 1

2 G̃tD
1
2 .

つまり, 歪対称な行列 Sk(B)から生じる B, C, Gパターンから, 歪対称化可能な行列 B により生じるパターン
全てが復元される.

操作 Sk(B)は実成分行列上で閉じた操作である. (一方で整数成分ではその限りではない.) したがって, 実成
分の B, C, G パターンを考えるのであれば, 歪対称な B から生じるものを考えるだけでよい. 従って, 以降は
B が歪対称であることを仮定する.



記述を簡単にするために, 歪対称行列 B ∈ Matn(R) に対応して, 以下の (R>0 で重みづけられた) 箙 Q(B)

を定義する.

• 頂点は 1, . . . , nである.

• bij > 0ならば, 重み bij をもつ矢 i
bij−−→ j がある. さらに矢はこれだけである.

さらに上の規則に基づけば, (2-cycle と自己 loop を持たない) R>0 で重みづけられた箙から歪対称行列が復元
される. 例えば, 以下のように歪対称行列と箙を対応付ける. 0

√
2 5

−
√
2 0 −π

−5 π 0

 ←→
1 2

3

√
2

5 π

2 Coxeter群と Coxeter配置
既存の団代数理論は, 有限型の分類が半単純 Lie 代数の分類と一致する [8] こと, 歪対称化可能行列に基づい
て定義されることなど, Kac-Moody の Lie 代数と密接な関係が知られていた. 実は, 実成分 C, G 行列におい
ては Coxeter群に付随する構造との類似が散見される. そのため, 主結果を述べる前に, Coxeter群と付随する
いくつかの構造を導入する.

2.1 Coxeter群
次の条件を満たす n頂点グラフ Γを考える.

• 頂点は 1,. . . , nとラベルづけられている.

• 辺は 3以上の整数または∞により重みづけられている.

i, j = 1, . . . , nに対し, mij を頂点 iと j をつなぐ辺の重みとする. ただし iと j が辺で結ばれていないときは
mij = 2 とし, また i = j のときは mii = 1 とする. このとき, Γ に対応する Coxeter 群とは, n 個の生成元
s1, . . . , sn と Γにより定まる関係式により生成される以下の群のことをいう.

W (Γ) = ⟨s1, . . . , sn | (sisj)mij = id⟩.

ただし, mij =∞のとき, 関係式 (sisj)
mij = idは無視する. この Γに対応して, 実 n× n行列

A =

(
− cos

π

mij

)
∈ Matn(R) (5)

を Schläfli行列という. (対角成分は 1であり, iと j がつながっていない場合は, (i, j)成分が 0になる.)

2.2 有限 Coxeter群と Coxeter配置
Coxeter群が有限になるか否かは, 次の事実により完全に分類されている.

定理 2.1 ([6]). Γを連結な Coxeterグラフとする. Coxeter群W (Γ)が有限であることと, Γが図 2に現れる
Coxeter図であることは同値である.

また, このとき (n頂点をもつ) Coxeter群は Rn 上の有限鏡映群 (鏡映のなす有限群)として実現され, かつす
べての有限鏡映群はこのようなもので尽くされることが知られている. このとき, この鏡映面の配置を Coxeter

配置と呼ぶ. また (大まかにいうと) その鏡映面の法線ベクトル (に長さの条件を付したもの) をルートといい,

その全体をルート系という. 例として, A2 型の超平面配置とルート系を以下に挙げる. Rn を上のルートを持た
ないある平面によってルート系を 2つに分割し, その一方を正ルート系と呼ぶ. すると, その中で”最も広い”基
底をとることができる. (正確には, 他の正ルートを非負の線形結合として表示できる基底のことを言う.) これ
を単純ルート系 ∆という.



An: Bn = Cn:
4

Dn:

E6: E7:

E8:
F4:

4

H3:
5 H4:

5 I2(m): m

図 2 Coxeter図. ただし, 辺の重み 3を省略している. また, m ∈ Z≥3 である.

図 3 Coxeter配置.

α1

α2

図 4 ルート系. 太い線で描かれたベクトル
は正ルートであり, α1, α2 が単純ルートで
ある.

3 主定理
3.1 G扇構造を導く予想
まずは cベクトルの符号同一性が G扇構造を導くかどうかに関する主結果を述べる. この問に関連して, 次の
予想を導入した.

予想 3.1 (全符号同一性予想). B を歪対称な行列であって, その cベクトルは全て符号同一であるとする. この
とき, B または B⊤ と変異同値な任意の行列 B′ に対しても, その cベクトルは全て符号同一である.

予想 3.2 (離散性予想). B を歪対称な行列であって, その cベクトルは全て符号同一であるとする. もし, cベ
クトルが第 i成分単位ベクトルと平行になるのであれば, その長さは 1である.

これら 2つの予想は整数成分歪対称行列に対しては完全に解決されている. 一方で, 実成分に対してはまだ未
解決である.

定理 3.3 ([7]). 予想 3.1 と予想 3.2の元で, G扇はたしかに扇となる.



3.2 符号同一性を満たすクラス
3.2.1 有限型の分類
次に, 有限型の分類について, 以下の結果を得た. この結果は, 整数成分の場合における [8]で知られていた結
果の拡張である.

定理 3.4 ([7]). 歪対称行列 B に関して, 次の条件を考える.

任意の変異同値な B′ ∼ B に対して, cベクトルの符号同一性が成り立ち, かつ異なる cベクトルは有限
個しか現れない

B が以下の Coxeter箙に変異同値であるとき, かつその時に限り, 上の条件が成り立つ.

An: Bn = Cn:
[4]

Dn:

E6: E7:

E8:
F4:

[4]

H3:
[5]

H4:
[5]

I2(m):
[m]

図 5 Coxeter箙. [m] = 2 cos π
m
とする. (特に [3] = 1を省略している.)

この箙は, 図 2 の各辺の重み m を [m] = 2 cos π
m
にして, ある向き付けを与えたものである. この操作の際

に, 異なる向き付けも考えられるが, それは団代数の中ではそれは問題にならない. (このような箙については,

いかなる向き付けを与えても, それは変異同値になる.) したがって, この事実は, 有限型の符号同一的 cベクト
ルは, Coxeter図により分類されることを意味する.

さらに, (コンピュータによる具体的な計算により) 次の Coxeter 配置との関係性を観測している. 有限型の
Coxeter図から正ルート系 Πと単純ルート系 ∆が定まるが, 集合 Π≥−1 = Π ∪ (−∆)を概正ルート系とよぶ.

定理 3.5 ([7]). B は X = An, . . . , I2(m)のいずれかの Coxeter箙に変異同値であるとする. このとき, G扇
構造が確かに定まり, かつ次の対応が成り立つ.

(g ベクトルの数) = (概正ルートの数), (G錐の数) = (概正ルートが定める部屋の数).

一方で, 具体的に「概正ルート系と g ベクトルにどのような対応付けがあるか」という問は, (整数の場合でさ
え)一般的にはまだ解決していない. (いくつかの部分的な結果は様々知られてはいるが)

3.2.2 準整数型箙
定理 1.4 と定理 1.9 によると, 整数成分の歪対称化可能行列 B に対して, Sk(B) も c ベクトルの符号
同一性を満たす. この Sk(B) に対応する箙を準整数型箙とよぶ. この準整数型箙 Q (これを歪対称行列
Q = (qij) ∈ Matn(R)と同一視する)に対して, 次の判定法を与えた.

定理 3.6 ([7]). 箙 Q = (qij)が準整数型であることと, 次の 2条件を満たすことは同値である.

• 任意の i, j に対して, q2ij ∈ Zである.



• 向きを無視した, 任意の Q のサイクルについて, その辺の重みが順に qk0,k1 , qk1,k2 , . . . , qkr−1,kr

(k0 = kr)であるとする. このとき, その積
r∏

j=1

qkj−1,kj

は整数である.

特に, 上の 2条件を満たす箙に対して, cベクトルの符号同一性が成り立つ.

一般に, Q = Sk(B)となる整数成分歪対称化可能行列 B が何かを与えることは難しいが, この条件は容易に
確認可能である. 例えば, 図 6は準整数型であり, 図 7は準整数型ではない.

1 2

34

4
√
10

2
√
14√

35

5

3
√
35

図 6 準整数型箙.

1 2

34

4
√
5

2√
5

5

3

図 7 非準整数型箙.

実は, この定理 3.6の条件には Coxeter群の結晶性との類似がある. というのも, Coxeter群W (Γ)が結晶群
であるための必要十分条件は, 対応する Schläfli 行列 Aに対して, 2Aがこの条件をみたすことと同値であるこ
とが知られている [6].
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